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Abstract. We construct a low-energy effective field theory which allows for a full treatment of the isospin-
breaking effects in semileptonic weak interactions. To this end, we enlarge the particle spectrum of chiral
perturbation theory with virtual photons by including also the light leptons as dynamical degrees of
freedom. Using super-heat-kernel techniques, we determine the additional one-loop divergences generated
by the presence of virtual leptons and give the full list of associated local counterterms. We illustrate the
use of our effective theory by applying it to the decays π → `ν` and K → `ν`.

1 Introduction

In the last few years, the predictions of chiral perturbation
theory [1–3] have been carried forward to a remarkable de-
gree of accuracy. In particular, the result for the pion–pion
scattering amplitude is now available at the two-loop level
[4] in the standard case. Let us illustrate this theoretical
progress by the following numbers: Weinberg’s calculation
[5] of the scattering amplitude at leading order in the low-
energy expansion gives the value a0

0 = 0.16 for the isospin
zero S wave scattering length. The one-loop calculation [6]
shifts the leading order term to a0

0 = 0.20. Finally, the re-
cent analysis to order p6 [4] predicts the scattering length
to lie within the range 0.206 ≤ a0

0 ≤ 0.217 (see also [7]). An
analogous calculation at next-to-next-to-leading order has
also been performed in the framework of generalized chi-
ral perturbation theory [8], which allows also for smaller
values of the quark condensate than the standard scheme.
In the generalized framework, an accurate determination
of a0

0 within the whole range of the present experimental
value, a0

0 = 0.26 ± 0.05 [9], can be interpreted in terms of
the size of 〈0|q̄q|0〉, whereas standard chiral perturbation
theory, resting on the assumption that 〈0|q̄q|0〉 is large,
gives a rather precise prediction for this scattering length.
New high statistics data which are expected for the near
future may allow one to determine the nature of chiral
symmetry breaking and to decide about the validity of
the standard chiral expansion scheme. In this context, the
measurement of the lifetime of π+π− atoms at CERN [10],
or new high statistics K`4 experiments by the E865 and
KLOE collaborations at BNL [11] and DAΦNE [12], re-
spectively, are of particular interest.
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The theoretical results mentioned above were obtained
by neglecting all isospin-breaking effects, i.e. in the limit
mu = md, e = 0. However, once even two-loop effects are
taken into account, such an approach is not sufficient any
more. It has been shown explicitly [13] that the electro-
magnetic corrections to the S wave scattering lengths are
of comparable size to the O(p6) strong interaction contri-
butions. (See also [14] for a discussion of electromagnetic
effects in neutral pion scattering.) Such an analysis re-
quires, of course, an extension of the usual low-energy ef-
fective theory. While isospin-breaking effects generated by
a non-vanishing quark mass difference md − mu are fully
contained in the pure QCD sector of the effective chiral
Lagrangian, the treatment of isospin violation of electro-
magnetic origin requires the inclusion of virtual photons
and the appropriate local terms up to O(e2p2). The suit-
able theoretical framework has been worked out in [15–17]
for the three flavour case and in [14,13] for chiral SU(2).
With these theoretical tools, it is possible to obtain the
chiral structure of the electromagnetic contributions to
O(e2p2) for all purely mesonic matrix elements.

The analysis of electromagnetic corrections in semilep-
tonic reactions requires still a further extension of chi-
ral perturbation theory: In this case, also the light lep-
tons have to be included as explicit dynamical degrees
of freedom. (An older discussion of radiative corrections
in semileptonic weak interactions, with a current algebra
treatment of the hadronic matrix elements involved, can
be found in [18].) Only within such a framework, one will
have full control over all possible isospin-breaking effects
in the analysis of high statistics K`4 data which will consti-
tute an important source of information on the π–π scat-
tering parameters and low-energy phase shifts. The same
refined methods are, of course, also necessary for the in-
terpretation of forthcoming high precision experiments on
other semileptonic decays like K`3, etc.
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It is the purpose of this paper to lay the necessary
theoretical foundations for the full treatment of electro-
magnetic effects in the semileptonic processes of the pseu-
doscalar octet within the framework of an effective low-
energy theory. In Sect. 2 we construct our lowest-order
effective Lagrangian and we define our (extended) chi-
ral counting rules. The additional one-loop divergences
generated by the presence of virtual leptons are obtained
in Sect. 3 by using recently developed super-heat-kernel
methods [19,20]. The full list of local counterterms arising
at next-to-leading order is presented in Sect. 4. In Sect. 5
we apply our effective theory to the decays π → `ν` and
K → `ν`. Our conclusions, together with an outlook to
possible applications and extensions of the present work,
are summarized in Sect. 6. Several expressions which
would only interrupt the argument in the text are col-
lected in the Appendix.

2 The effective Lagrangian to lowest order

For a complete treatment of the electromagnetic effects
in the semileptonic decays of pions and kaons, not only
the pseudoscalars but also the photon and the light lep-
tons have to be included as dynamical degrees of free-
dom in an appropriate effective Lagrangian. Its construc-
tion starts with QCD in the limit mu = md = ms =
0. The resulting symmetry under the chiral group G =
SU(3)L×SU(3)R is spontaneously broken to SU(3)V . The
pseudoscalar mesons (π, K, η) are interpreted as the cor-
responding Goldstone fields ϕi (i = 1, . . . , 8) acting as
coordinates of the coset space SU(3)L ×SU(3)R/SU(3)V .
The coset variables uL,R(ϕ) transform as

uL(ϕ) G→ gLuLh(g, ϕ)−1,

uR(ϕ) G→ gRuRh(g, ϕ)−1,

g = (gL, gR) ∈ SU(3)L × SU(3)R, (2.1)

where h(g, ϕ) is the nonlinear realization of G [21].
The photon field Aµ and the leptons `, ν` (` = e, µ)

are introduced in

uµ = i[u†R(∂µ − irµ)uR − u†L(∂µ − ilµ)uL] (2.2)

by adding appropriate terms to the usual external vector
and axial-vector sources vµ, aµ. At the quark level, this
procedure corresponds to the usual minimal coupling pre-
scription in the case of electromagnetism, and to Cabibbo
universality in the case of the charged weak currents:

lµ = vµ − aµ − eQem
L Aµ +

∑
`

(¯̀γµν`LQw
L + ν`Lγµ`Qw†

L ),

rµ = vµ + aµ − eQem
R Aµ. (2.3)

The 3 × 3 matrices Qem
L,R, Qw

L are spurion fields with the
transformation properties

Qem,w
L

G→ gLQem,w
L g†L, Qem

R
G→ gRQem

R g†R (2.4)

under the chiral group. We also define

Qem,w
L := u†LQem,w

L uL, Qem
R := u†RQem

R uR (2.5)

transforming as

Qem,w
L

G→ h(g, ϕ)Qem,w
L h(g, ϕ)−1,

Qem
R

G→ h(g, ϕ)Qem
R h(g, ϕ)−1. (2.6)

In the end, one identifies Qem
L,R with the quark charge ma-

trix

Qem =

2/3 0 0
0 −1/3 0
0 0 −1/3

 , (2.7)

whereas the weak spurion is taken at

Qw
L = −2

√
2 GF

0 Vud Vus

0 0 0
0 0 0

 , (2.8)

where GF is the Fermi coupling constant and Vud, Vus are
Kobayashi–Maskawa matrix elements.

With these building blocks, our lowest-order effective
Lagrangian takes the form

Leff =
F0

2

4
〈uµuµ + χ+〉 + e2F0

4Z〈Qem
L Qem

R 〉 (2.9)

− 1
4
FµνFµν +

∑
`

[¯̀(i 6∂ + e 6A − m`)` + ν`Li 6∂ν`L],

where 〈 〉 denotes the trace in three-dimensional flavor
space. F0 is the pion decay constant in the chiral limit and
in the absence of electroweak interactions. Explicit chiral
symmetry breaking is included in χ+ = u†RχuL + u†Lχ†uR
by the substitution χ → 2B0Mquark, where B0 is related
to the quark condensate in the chiral limit by 〈0|q̄q|0〉 =
−F 2

0 B0. The numerical value of the coupling constant Z
can be determined from the mass difference of the charged
and the neutral pion. The relation M2

π± − M2
π0 = 2e2ZF 2

0
resulting from (2.9) implies Z ' 0.8.

We adopt an expansion scheme where the electric
charge e, the lepton masses me, mµ and fermion bilinears
are considered as quantities of order p in the chiral count-
ing, where p is a typical meson momentum. Note, however,
that terms of O(e4) will be neglected throughout.

3 One-loop divergences

For the construction of the one-loop functional we first
add a gauge-breaking term (we are using the Feynman
gauge) and external sources to (2.9):

Leff → Leff − 1
2
(∂µAµ)2 − JµAµ

+
∑

`

(ρ̄`` + ¯̀ρ` + σ̄`ν`L + ν`Lσ`). (3.1)
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Then we expand the lowest-order action associated with
(3.1) around the solutions ϕcl, Aµ

cl, `cl, ν`L,cl of the classi-
cal equations of motion. In the standard “gauge” uR(ϕcl)
= uL(ϕcl)† =: u(ϕcl) a convenient choice of the pseu-
doscalar fluctuation variables ξi (i = 1, . . . , 8) is given
by

uR = ucleiξiλi/2F0 , uL = u†cle
−iξiλi/2F0 ,

ξi(ϕcl) = 0, (3.2)

with the Gell-Mann matrices λi (i = 1, . . . , 8). For the
photon and the fermions we write

Aµ = Aµ
cl + εµ, ` = `cl + η`, ν`L = ν`L,cl + ζ`L. (3.3)

In the following formulas, we shall drop the subscript “cl”
for simplicity. The classical equations of motion take the
form

∇µuµ =
i
2

(
χ− − 1

3
〈χ−〉

)
+2ie2F0

2Z[Qem
R ,Qem

L ],

2Aµ = Jµ +
eF0

2

2
〈uµ(Qem

R − Qem
L )〉

−e
∑

`

`γµ`,

(i 6∂ + e 6A − m`)` = −ρ` +
F0

2

2
〈uµQw

L 〉γµν`L,

i 6∂ν`L = −σ` +
F0

2

2
〈uµQw†

L 〉γµ`L, (3.4)

where

∇µ = ∂µ + [Γµ, ],

Γµ =
1
2
[u†(∂µ − irµ)u + u(∂µ − ilµ)u†],

χ− = u†χu† − uχ†u. (3.5)

The solutions of (3.4) are uniquely determined functionals
of the external sources vµ, aµ, χ, Jµ, ρ`, σ`. (Note that the
usual Feynman boundary conditions are always implicitly
understood.)

Expanding (3.1) up to terms quadratic in the variables
ξi, εµ, η`, ζ`L, we obtain the second-order fluctuation La-
grangian

L(2) = −1
2
ξi(d · d + s)ijξj

+
1
2
εµ2εµ +

e2F0
2

4
〈(Qem

R − Qem
L )2〉εµεµ

− ieF0

4
〈[uµ,Qem

R + Qem
L ]λi〉ξiε

µ

+
eF0

2
〈(Qem

R − Qem
L )λi〉(dµ

ijξj)εµ

+
∑

`

{η`(i 6∂ + e 6A − m`)η` + ζ`Li 6∂ζ`L

+
iF0

4
〈[uµ, (`γµζ`L + η`γ

µν`L)Qw
L + h.c.]λi〉ξi

+
F0

2
〈[(`γµζ`L + η`γµν`L)Qw

L + h.c.]λi〉dµ
ijξj

+
eF0

2

2
εµ〈(Qem

R − Qem
L )[(`γµζ`L + η`γ

µν`L)Qw
L

+ h.c.]〉 + e(η` 6ε` + ¯̀ 6εη`)

− F0
2

2
〈uµ(η`γ

µζ`LQw
L + h.c.)〉}, (3.6)

where

dµ
ij = δij∂

µ − 1
2
〈Γµ[λi, λj ]〉, (3.7)

and

sij = 〈1
8
(u · u + χ+){λi, λj} − 1

4
uµλiu

µλj

+
e2F0

2Z

2
{Qem

R ,Qem
L }{λi, λj}

− e2F0
2Z(λiQem

R λjQem
L + λjQem

R λiQem
L )〉.(3.8)

For the following intermediate steps it is convenient to
switch to Euclidean space. The second-order fluctuation
Lagrangian can then be written in the form

L(2) =
1
2
ΦT (−D · D + Y )Φ + Ψ(6D + m)Ψ

+ iΨγρ(βDρ + αρ)Φ

+ iΦT (− ←
Dρ β̄ + ᾱρ)γρΨ. (3.9)

In (3.9) all bosonic fluctuation variables are collected in a
multicomponent field

Φ =

[
ξi

εµ

]
, (3.10)

where Dρ denotes an associated covariant derivative:

Dρ = ∂ρ + Xρ. (3.11)

Analogously, the fermionic fluctuation fields are combined
in

Ψ =

[
ηa

ζmL

]
, (3.12)

with a covariant derivative

Dρ = ∂ρ + ifρ. (3.13)

The explicit expressions for the matrix fields Xρ, Y , fρ,
m, β, αρ are given in the Appendix.

In the notation of [19], the second-order fluctuation
action associated with (3.9) has the general structure

S(2) =
1
2
ΦT AΦ + ΨBΨ + ΦT ΓΨ + ΨΓΦ. (3.14)

The one-loop functional WL=1 is given by the Gaussian
functional integral

e−WL=1 =
∫

[dΦdΨdΨ ] e−S(2)
, (3.15)
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leading to

WL=1 =
1
2
Tr ln

A
A0

− Tr ln
B
B0

(3.16)

−
∞∑

n=1

1
2n

Tr
(
A−1ΓB−1Γ − A−1ΓT B−1T Γ

T
)n

,

where A0, B0 denote the free-field limit of A and B, re-
spectively.

The term (1/2)Tr ln(A/A0) corresponds to purely
bosonic loops (only pseudoscalar and/or photon propa-
gators in the loop); its divergent part has been calculated
by Gasser and Leutwyler [3] for the strong sector and by
Urech [15] for the electromagnetic sector. In our theory,
the divergences generated by the bosonic loops have ex-
actly the same form, however with the generalized source
term lµ defined in (2.3). As a consequence, also contribu-
tions with external lepton fields are induced in this way.

Purely fermionic loops are described by −Tr ln(B/B0).
The divergent part of this term affects only the wave func-
tion renormalization of the photon, as contributions of or-
der G2

F will be neglected.
The last term in (3.16) is a genuinely new part oc-

curring in our effective theory with virtual leptons. It de-
scribes all one-loop graphs where boson and fermion prop-
agators alternate. In order to determine the ultraviolet di-
vergences associated with this mixed one-loop functional,
we employ the super-heat-kernel technique developed in
[19]. To this end we introduce the supermatrix

K =

[
A √

2µΓ√
2µΓ µB

]
, (3.17)

where µ is an arbitrary mass parameter. The one-loop
functional can now be written as

WL=1 =
1
2
Str ln

K

K0
− 1

2
Tr ln

B
B0

+ . . . . (3.18)

The dots refer to terms at least quartic in the fermion
fields, which are irrelevant for our present purposes. In the
proper-time formulation, the first term in (3.18) assumes
the form
1
2
Str ln

K

K0
= −1

2

∫ ∞
0

dτ

τ
Str

(
e−τK − e−τK0

)
(3.19)

= −1
2

∫ ∞
0

dτ

τ

∫
ddx str〈x|e−τK − e−τK0 |x〉.

The further evaluation of this expression is considerably
simplified [20] by the observation that the action associ-
ated with (3.9) is invariant under local gauge transforma-
tions

Φ(x) → R(x)Φ(x), R(x)T R(x) = 1,

Ψ(x) → U(x)Ψ(x), U(x)†U(x) = 1,

Xµ → R∂µR−1 + RXµR−1,

Y → RY R−1,

ifµ → U∂µU−1 + U ifµU−1,

αµ → UαµR−1,

β → UβR−1,

m → UmU−1.

(3.20)

Consequently, also the divergent part of the one-loop func-
tional exhibits this symmetry property [22]. The matrix
fields Y , αµ, β, m together with their covariant deriva-
tives

∇µY := ∂µY + [Xµ, Y ],
∇µαν := ∂µαν + ifµαν − ανXµ,

∇µβ := ∂µβ + ifµβ − βXµ,

∇µm := ∂µm + i[fµ, m], (3.21)

and the associated “field-strength” tensors

Xµν := ∂µXν − ∂νXµ + [Xµ, Xν ],
fµν := ∂µfν − ∂νfµ + i[fµ, fν ] (3.22)

are therefore the appropriate building blocks for the con-
struction of W div

L=1. As a consequence, the following inter-
mediate steps in the further computation of (3.19) may be
performed with constant fields [23] Xµ, Y = X2, αµ, β,
fµ, m. As the final result for the one-loop divergences has
to be gauge invariant, no information is lost and the full
expression for the x dependent fields is recovered by the
substitutions

X2 → Y,[
Xµ, X2] → ∇µY,

ifµαν − ανXµ → ∇µαν ,

ifµβ − βXµ → ∇µβ,

i [fµ, m] → ∇µm,

[Xµ, Xν ] → Xµν ,

i [fµ, fν ] → fµν . (3.23)

In this approach, the relevant diagonal matrix element in
(3.19) assumes the simple form

str〈x|e−τK |x〉 = str
∫

ddk〈x|e−τK |k〉〈k|x〉

= str
∫

ddk

(2π)d
e−ik·xe−τKeik·x

= str
∫

ddk

(2π)d
eM+N , (3.24)

with

M = −τ

[
k2 − 2ik ·X 0

0 µ(i6k + i6f + m)

]
, (3.25)

N = −iτ
√

2µ

[
0 −(ikµ + Xµ)βγµ + α · γ

γµβ(ikµ + Xµ) + γ · α 0

]
.

We are interested only in the part bilinear in the
fermionic matrix N . The corresponding piece of the gen-
erating functional (3.16) is just

WL=1|Γ...Γ := −Tr(A−1ΓB−1Γ ). (3.26)

The appropriate decomposition of the exponential in (3.24)
can be performed by using the formula

exp(M + N) = expM Psexp
∫ 1

0
dsÑ(s), (3.27)
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with

Ñ(s) := e−sMNesM

and

Psexp
∫ 1

0
dsÑ(s) :=

∞∑
n=0

∫ 1

0
ds1

∫ s1

0
ds2 . . .∫ sn−1

0
dsnÑ(s1)Ñ(s2) . . . Ñ(sn). (3.28)

Picking out the part bilinear in N ,

str eM+N = (3.29)∫ 1

0
ds

∫ s

0
ds′str

[
e(1−s)MNe(s−s′)MNes′M

]
+ . . . ,

a few simple manipulations lead to

str eM+N = −2µτ2
∞∑

n=0

1
n!

∫ 1

0
dz tr {(2iτzk · X)n

× [−(ikµ + Xµ)β + αµ

]
γµ

× exp
[−τzk2 − τµ(1 − z)(i6k + i6f + m)

]
× γν [β(ikν + Xν) + αν ]

}
+ . . . . (3.30)

After integration over z, the µ-dependent terms cancel
once the proper-time and the momentum-space integrals
are applied. The remaining contribution to WL=1 assumes
the form

WL=1|Γ...Γ =
∫

ddx
∞∑

n=0

∫ ∞
0

dt

t
tn+3−d

×
∫

ddl

(2π)d
(l2)−n−1tr

{
(2il · X)n

× [−(ilµ/t + Xµ)β + αµ

]
γµ

× exp (−i6 l − it6f − tm)

× γν [β(ilν/t + Xν) + αν ]
}

, (3.31)

where a suitable change of the integration variables has
been performed. The divergent part (for d → 4) can now
easily be isolated. Note that terms of the form β . . . β are
at least quadratic in GF (see (A.13) and (A.14)) and will
thus be discarded. For the further decomposition of exp(−i
6 l− it6f −tm) we employ again (3.27) up to second order in
i6f+m. Then we perform the momentum-space integration
using

lim
d→4

∫
ddl

(2π)d

(
cos l

l2
,
sin l

l3
,
sin l

l

)
=

1
(4π)2

(−2, 2,−4),

l :=
√

lµlµ. (3.32)

In the next step, one has to identify the appropriate gauge-
invariant combinations (constituting a non-trivial check of
our calculation) and reconstruct the full result by using

(3.23). In this way, we obtain

W div
L=1|Γ...Γ =

1
(4π)2(d − 4)

∫
d4x tr [α · γγµ∇µγ · α

−2α · γmγ · α + 2α · γβY − 2βγ · αY

−α · γγµγν∇µ∇νβ + βγµγν∇µ∇νγ · α

−α · γ(6∇m)β + α · γmβγµ∇µβ

−2β(6∇m)γ · α − βmγµ∇µγ · α

+2α · γm2β − 2βm2γ · α
]
. (3.33)

Now we insert the explicit expressions for Xµ, Y , fµ, αµ,
β, m. Discarding again all terms which are O(Gn

F) with
n ≥ 2, we get

W div
L=1|Γ...Γ = − e2

(4π)2(d − 4)

×
∫

d4x
∑

`

{
2¯̀(6∂ − ie 6A)` + 8m```

+
3F 2

0

2
〈(`γµν`LQw

L − ν`Lγµ`Qw†
L )∇µ(Qem

R − Qem
L )〉

+iF0
2〈(`γµν`LQw

L − ν`Lγµ`Qw†
L )[uµ,Qem

L ]〉
+3F0

2m`〈(`ν`LQw
L + ν`L`Qw†

L )Qem
R 〉

}
. (3.34)

Transforming back to Minkowski space, our result for
the divergent part of the mixed one-loop functional takes
the final form

W div
L=1|Γ...Γ =

e2

(4π)2(d − 4)

∫
d4x

×
∑

`

{−2¯̀(i 6∂ + e 6A)` + 8m```

−3iF0
2

2
〈(`γµν`LQw

L − ν`Lγµ`Qw†
L )∇µ(Qem

R − Qem
L )〉

+F0
2〈(`γµν`LQw

L − ν`Lγµ`Qw†
L )[uµ,Qem

L ]〉
+3F0

2m`〈(`ν`LQw
L + ν`L`Qw†

L )Qem
R 〉

}
. (3.35)

4 The next-to-leading order Lagrangian

We are now in the position to construct the most general
local action at next-to-leading order which will also renor-
malize the one-loop divergences discussed in the previous
section.

In the absence of virtual photons and leptons, the local
action of O(p4) is generated by the well-known Gasser–
Leutwyler Lagrangian Lp4 [3]:

Lp4 = L1〈uµuµ〉2 + L2〈uµuν〉〈uµuν〉
+ L3〈uµuµuνuν〉 + L4〈uµuµ〉〈χ+〉
+ L5〈uµuµχ+〉 + L6〈χ+〉2 + L7〈χ−〉2

+
1
4
(2L8 + L12)〈χ2

+〉 +
1
4
(2L8 − L12)〈χ2

−〉
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− iL9〈fµν
+ uµuν〉 +

1
4
(L10 + 2L11)〈f+µνfµν

+ 〉

− 1
4
(L10 − 2L11)〈f−µνfµν

− 〉, (4.1)

with

fµν
± = uFµν

L u† ± u†Fµν
R u,

Fµν
L = ∂µlν − ∂ν lµ − i[lµ, lν ],

Fµν
R = ∂µrν − ∂νrµ − i[rµ, rν ]. (4.2)

If also the photon is treated as a dynamical degree of free-
dom, the following local counterterms of O(e2p2) have to
be added [15]:

Le2p2 = e2F0
2
{

1
2
K1〈(Qem

L )2 + (Qem
R )2〉〈uµuµ〉

+ K2〈Qem
L Qem

R 〉〈uµuµ〉
− K3[〈Qem

L uµ〉〈Qem
L uµ〉 + 〈Qem

R uµ〉〈Qem
R uµ〉]

+ K4〈Qem
L uµ〉〈Qem

R uµ〉
+ K5〈[(Qem

L )2 + (Qem
R )2]uµuµ〉

+ K6〈(Qem
L Qem

R + Qem
R Qem

L )uµuµ〉
+

1
2
K7〈(Qem

L )2 + (Qem
R )2〉〈χ+〉

+ K8〈Qem
L Qem

R 〉〈χ+〉
+ K9〈[(Qem

L )2 + (Qem
R )2]χ+〉

+ K10〈(Qem
L Qem

R + Qem
R Qem

L )χ+〉
− K11〈(Qem

L Qem
R − Qem

R Qem
L )χ−〉

− iK12〈[(∇̂µQem
L )Qem

L − Qem
L ∇̂µQem

L

− (∇̂µQem
R )Qem

R + Qem
R ∇̂µQem

R ]uµ〉
+ K13〈(∇̂µQem

L )(∇̂µQem
R )〉

+ K14〈(∇̂µQem
L )(∇̂µQem

L )

+ (∇̂µQem
R )(∇̂µQem

R )〉
}

, (4.3)

where

∇̂µQem
L = ∇µQem

L +
i
2
[uµ,Qem

L ] = u(DµQem
L )u†,

∇̂µQem
R = ∇µQem

R − i
2
[uµ,Qem

R ] = u†(DµQem
R )u, (4.4)

with

DµQem
L = ∂µQem

L − i[lµ, Qem
L ],

DµQem
R = ∂µQem

R − i[rµ, Qem
R ]. (4.5)

In the presence of virtual leptons, the structure of the
Lagrangians (4.1) and (4.3) remains unchanged. The only
necessary modification is the inclusion of the lepton term
in lµ (see (2.3)). In addition to Lp4 and Le2p2 , we need the
“leptonic” Lagrangian

Llept = e2
∑

`

{
F0

2 [
X1`γµν`L〈uµ{Qem

R ,Qw
L}〉

+X2`γµν`L〈uµ[Qem
R ,Qw

L ]〉

+X3m``ν`L〈Qw
LQem

R 〉
+iX4`γµν`L〈Qw

L ∇̂µQem
L 〉

+iX5`γµν`L〈Qw
L ∇̂µQem

R 〉 + h.c.
]

+X6 ¯̀(i 6∂ + e 6A)`

+X7m```
}

. (4.6)

In Llept we consider only terms quadratic in the lepton
fields and at most linear in GF. The coupling constants
X1, . . . , X5 are real in the limit of CP invariance and the
reality of X6 and X7 is required by the hermiticity of the
associated action. The terms with X4,5 will not appear
in realistic physical processes as the generated amplitudes
contain an external (axial-) vector source (see (4.4) and
(4.5)).

In deriving a minimal set of terms in (4.6), we have
used partial integration, the equations of motion (3.4) and
the following relations derived from (2.5), (2.7) and (2.8):

Qem
L Qw

L =
2
3
Qw

L , Qw
LQem

L = −1
3
Qw

L , 〈Qw
L 〉 = 0.

(4.7)
We give here some typical examples of terms which can
be eliminated in this way:

e2F0
2`γµν`L〈uµ[Qem

L ,Qw
L ]〉 = e2F0

2`γµν`L〈uµQw
L 〉

→ 2e2 ¯̀(i 6∂ + e 6A − m`)`,
e2ν`Li 6∂ν`L → e2 ¯̀(i 6∂ + e 6A − m`)`. (4.8)

Finally, also a photon Lagrangian

Lγ = e2X8FµνFµν , Fµν = ∂µAν − ∂νAµ, (4.9)

has to be added. This term cancels the divergences of the
photon two-point function generated by the lepton loops.
(The loop contributions of the charged pseudoscalars are
renormalized by the L10,11 terms in (4.1).)

The low–energy couplings Li, Ki, Xi arising here are
divergent (except L3, L7, K7, K13, K14 and X1). They ab-
sorb the divergences of the one-loop graphs via the renor-
malization

Li = Lr
i (µ) + ΓiΛ(µ), i = 1, . . . , 12,

Ki = Kr
i (µ) + ΣiΛ(µ), i = 1, . . . , 14,

Xi = Xr
i (µ) + ΞiΛ(µ), i = 1, . . . , 8,

Λ(µ) =
µd−4

(4π)2

{
1

d − 4
− 1

2
[ln(4π) + Γ ′(1) + 1]

}
, (4.10)

in the dimensional regularization scheme. The coefficients
Γi and Σi can be found in [3] and in [15], respectively.
Their values are not modified by the presence of virtual
leptons as long as contributions of O(G2

F) are neglected.
The “new” coefficients Ξ1, . . . Ξ7 are determined by

(3.35) and Ξ8 is derived from the divergent part of the
lepton loops:

Ξ1 = 0, Ξ2 = −3
4
, Ξ3 = −3, Ξ4 = −3

2
,

Ξ5 =
3
2
, Ξ6 = −5, Ξ7 = −1, Ξ8 = −4

3
. (4.11)
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5 π → `ν` and K → `ν`

We are now in the position to perform a complete one-loop
analysis of semileptonic pion and kaon decays including
the electromagnetic contributions of O(e2p2). As an illus-
tration we give here the theoretical results for the decay
rates of π → `ν` and K → `ν`. The former reaction will
also serve as the reference process for our further investi-
gations of semileptonic decays.

The contributions of graphs without virtual leptons to
the P → `ν` amplitudes (P = π, K) have already been
given in (5.3) and (5.4) of [17]. Now we have to add also
those diagrams in which a virtual photon is attached to
a charged lepton line, the contributions generated by the
counterterms in (4.6), and the leptonic wave function and
mass renormalization. The decay amplitude obtained in
this way is, of course, UV finite but still IR divergent.
To arrive at an infrared-finite result, we consider the ob-
servable Γ (P → `ν`(γ)) := Γ (P → `ν`) + Γ (P → `ν`γ).
The relevant expression for the total probability of in-
ner bremsstrahlung can be found in (4) of [24]. (We have
checked this formula.)

Combining the various contributions we obtain our fi-
nal result for the π`2(γ) decay:

Γ (π → `ν`(γ)) =
G2

F|Vud|2F0
2m2

`Mπ±

4π
(1 − zπ`)2

×
{

1 +
8

F0
2

[
Lr

4(µ)(M2
π + 2M2

K) + Lr
5(µ)M2

π

]
− 1

2(4π)2F0
2

[
2M2

π± ln
M2

π±

µ2 + 2M2
π0 ln

M2
π0

µ2

+ M2
K± ln

M2
K±

µ2 + M2
K0 ln

M2
K0

µ2

]
+ e2Er(µ) +

e2

(4π)2

[
3 ln

M2
π

µ2 + H(zπ`)
]}

, (5.1)

with zπ` = m2
`/M

2
π± , where m` denotes now the physical

mass of the charged lepton. The parameter Er(µ) denotes
the finite (renormalized) part of the linear combination of
coupling constants

E :=
8
3
K1 +

8
3
K2 +

20
9

K5 +
20
9

K6 + 4K12

−4
3
X1 − 4X2 + 4X3 − X6. (5.2)

The kinematical function H(z) is given by

H(z) =
23
2

− 3
1 − z

+ 11 ln z − 2 ln z

1 − z
− 3 ln z

(1 − z)2

− 8 ln(1 − z) − 4(1 + z)
1 − z

ln z ln(1 − z)

+
8(1 + z)
1 − z

∫ 1−z

0
dt

ln(1 − t)
t

. (5.3)

The scale independence of (5.1) can be checked by us-
ing the pertinent β function of the coupling (5.2) and the

(lowest-order) expressions for the pseudoscalar masses

M2
π± = 2B0m̂ + 2e2ZF0

2,

M2
π0 = 2B0m̂,

M2
K± = B0

[
(ms + m̂) − 2ε√

3
(ms − m̂)

]
+ 2e2ZF0

2,

M2
(−)
K 0

= B0

[
(ms + m̂) +

2ε√
3
(ms − m̂)

]
,

M2
η =

4
3
B0

(
ms +

m̂

2

)
. (5.4)

The mixing angle ε is given by

ε =
√

3
4

md − mu

ms − m̂
, (5.5)

the symbol m̂ stands for the mean value of the light quark
masses,

m̂ =
1
2
(mu + md), (5.6)

and B0 is the vacuum condensate parameter contained in
χ+. Finally, Mπ and MK in (5.1) denote the isospin limits
(mu = md, e = 0) of the pion mass and the kaon mass,
respectively:

M2
π = 2B0m̂, M2

K = B0(ms + m̂). (5.7)

Equation (5.1) allows in principle to extract the value
of the pion decay constant Fπ from the experimental knowl-
edge of the π`2(γ) decay rate. In order to obtain an unam-
biguous answer, let us define Fπ as being given by the
matrix element of the appropriate axial current between
the vacuum and the charged pion state in pure QCD. At
one loop, this gives the following (scale independent) ex-
pression [3]

Fπ = F0

{
1 +

4
F0

2

[
Lr

4(µ)(M2
π + 2M2

K) + Lr
5(µ)M2

π

]
− 1

2(4π)2F0
2

[
2M2

π ln
M2

π

µ2 + M2
K ln

M2
K

µ2

] }
. (5.8)

Extensive studies of the O(e2) radiative corrections to
π`2 decays already exist in the literature [24–26]. Mar-
ciano and Sirlin [26] have summarized the presently known
short- and long-distance radiative corrections to Γ (π →
`ν`(γ)). Their result, given in (7a) of [26], agrees with
the general structure of (5.1). Note that the kinematical
function F (x) defined in (7b) of [26] is related to (5.3) by
F (x) = H(x2)/4−1/2, and that the terms associated with
the parameters C2, C3 of [26] are beyond the scope of our
next-to-leading order analysis. In order to make contact
with [26], we need to specify the physical meaning we as-
cribe to the constant GF, which so far has mainly served
as a book-keeping device. From the point of view of the
low-energy approach we are following, it seems natural to
identify GF with the muon decay constant. To lowest or-
der in the weak interactions, the muon decay amplitude
follows from the effective Lagrangian

L′lept = −GF√
2

[
µ̄γµ(1 − γ5)νµ

][
ēγµ(1 − γ5)νe

]
. (5.9)
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When radiative corrections are included, the total muon
decay rate to leading order in GF remains finite order by
order in powers of the fine structure constant α [27]. At
order α [28],

Γ (µ → all) =
G2

Fm5
µ

192π3 f

(
m2

e

m2
µ

) [
1+

α

2π
(
25
4

−π2)+O(α2)
]
,

(5.10)
with f(x) = −8x−12x2 lnx+8x3−x4 for massless neutri-
nos. The corrections of order α2 have recently been com-
puted in [29] (see also the discussion in [30]). Up to a
negligible correction factor 1 + 3m2

µ/10M2
W , GF can be

identified with the constant Gµ appearing in (7a) of [26].
If we further identify fπ/

√
2 occurring in the same ex-

pression with the QCD quantity Fπ as defined above, we
obtain for the constant C1 of [26]

C1 = −4π2Er(Mρ) − 1
2

+ ln
M2

Z

M2
ρ

+
Z

4

[
3 + 2 ln

M2
π

M2
ρ

+ ln
M2

K

M2
ρ

]
. (5.11)

Quite analogously, we find for the K`2(γ) decay:

Γ (K → `ν`(γ)) =
G2

F|Vus|2F0
2m2

`MK±

4π
(1 − zK`)2

×
{

1 +
8

F0
2

[
Lr

4(µ)(M2
π + 2M2

K) + Lr
5(µ)M2

K

]
− 1

4(4π)2F0
2

[
2M2

π± ln
M2

π±

µ2 + M2
π0 ln

M2
π0

µ2

+ 4M2
K± ln

M2
K±

µ2 + 2M2
K0 ln

M2
K0

µ2 + 3M2
η ln

M2
η

µ2

]

+
16

√
3ε

3F0
2 Lr

5(µ)(M2
π − M2

K)

−
√

3ε

2(4π)2F0
2

[
M2

π ln
M2

π

µ2 − M2
η ln

M2
η

µ2

]

+ e2Er(µ) +
e2

(4π)2

[
3 ln

M2
K

µ2 + H(zK`)
]}

, (5.12)

with zK` = m2
`/M

2
K± . Note that (5.1) as well as (5.12)

contain the same (unknown) electromagnetic low-energy
coupling constant Er(µ). Taking the ratio of (5.12) and
(5.1), Er(µ) cancels and therefore the electromagnetic cor-
rections to this specific combination of observables are
uniquely determined at the order we consider. In prin-
ciple, this result could be used for an improvement in ex-
tracting the (strong) low-energy coupling L5 from the ex-
perimental data. In practice, however, the uncertainties
due to higher-order strong interaction effects are much
bigger than the electromagnetic corrections. Nevertheless,
this example shows that certain observables allow for un-
ambiguous predictions of the associated electromagnetic
contributions in spite of our (presently) poor knowledge
about the values of the electromagnetic low-energy cou-
plings. The same is, of course, also true for the ratios
Γ (P → eνe(γ))Γ (P → µνµ(γ)).

Defining the decay constant of the charged kaon as
described above for the pion1 we obtain [3]

FK± = F0

{
1 +

4
F0

2

[
Lr

4(µ)(M2
π + 2M2

K) + Lr
5(µ)M2

K

]
− 1

8(4π)2F0
2

[
3M2

π ln
M2

π

µ2 + 6M2
K ln

M2
K

µ2

+ 3M2
η ln

M2
η

µ2

]
− 8

√
3ε

3F 2
0

Lr
5(µ)(M2

K − M2
π)

−
√

3ε

4(4π)2F 2
0

[
M2

π ln
M2

π

µ2 − M2
η ln

M2
η

µ2

− 2
3
(M2

K − M2
π)

(
ln

M2
K

µ2 + 1
)]}

.

(5.13)

Performing the replacements Mπ± → MK± and Vud →
Vus in (7a) of [26], we find that in the case of the kaon
decay the constant C1 corresponds to

C1 = −4π2Er(Mρ) − 1
2

+ ln
M2

Z

M2
ρ

+
Z

4

[
3 + ln

M2
π

M2
ρ

+ 2 ln
M2

K

M2
ρ

]
. (5.14)

6 Conclusions

We have developed the appropriate low-energy effective
theory for a complete treatment of isospin-violating effects
in semileptonic weak processes. The electromagnetic inter-
action requires the inclusion of the photon and the light
lepton fields as explicit dynamical degrees of freedom in
the chiral Lagrangian. At next-to-leading order, the list of
local terms given by Gasser and Leutwyler [3] for the QCD
part and by Urech [15] for the electromagnetic interaction
of the pseudoscalars has to be enlarged. This is, of course,
a consequence of the presence of virtual leptons in our ex-
tended theory. Regarding pure lepton or photon bilinears
as “trivial”, five additional “non-trivial” terms of this type
are arising. Two of them will, however, not appear in real-
istic physical processes. One may therefore conclude that
the main bulk of electromagnetic low-energy constants is
already contained in Urech’s Lagrangian and the inclusion
of virtual leptons in chiral perturbation theory does not
substantially aggravate the problem of unknown parame-
ters.

The continuation of the present work will follow two
principal lines. Firstly, we are now in the position to calcu-
late the electromagnetic corrections to semileptonic weak

1 In the case of the pion, the distinction between the charged
and the neutral decay constant is a tiny O

(
(md − mu)2

)
ef-

fect, and arises only at higher orders, whereas FK±/F(−)
K 0

is

O
(
(md − mu)

)
.
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decays where all constraints imposed by chiral symmetry
are taken into account. In spite of our large ignorance of
the actual values of the electromagnetic low-energy cou-
plings, it will often be possible to relate the electromag-
netic contributions to different processes in this way. For
specific combinations of observables one might even find
parameter-free predictions. Simple examples of this kind
have been given for the P`2 decays. In some fortunate cases
simple order-of-magnitude estimates for the electromag-
netic couplings based on chiral dimensional analysis may
even be sufficient. (See for instance [16,17].)

The second major task for the near future is, of course,
the determination of the physical values of the coupling
constants Kr

i and Xr
i in the standard model. In contrast

to the rather good information on the QCD effective cou-
plings Lr

1, . . . , L
r
10 that can be obtained in the standard

framework [2,3], only very little is known so far in the
electromagnetic sector. First attempts to estimate some
of the Ki can be found in [31–33]. As far as the constants
Xi are concerned, the recent analysis [34] of the countert-
erms contributing to the decay processes of light neutral
pseudoscalars into charged lepton pairs leads one to expect
that reliable estimates for these constants can be achieved
within a large-Nc approach. Only with a more precise in-
formation about the Kr

i and Xr
i will the electromagnetic

part of the chiral effective theory finally exhibit its full
predictive power.

Acknowledgements. We would like to thank G. Ecker for fruit-
ful discussions and a careful reading of the manuscript. P.T.
acknowledges the kind hospitality of the FEN department, and
expresses his thanks to the Swedish Research Council (NFR)
for financial support.

Appendix

The bosonic covariant derivative occurring in (3.9),

Dρ = ∂ρ + Xρ (A.1)

has the index structure

Xρ = −XT
ρ =

[
(Xρ)ij (Xρ)iν

(Xρ)µj (Xρ)µν

]
, (A.2)

where the matrix elements are given by

(Xρ)ij = −1
2
〈Γρ[λi, λj ]〉,

(Xρ)iν =
eF0

4
δρν〈(Qem

R − Qem
L )λi〉,

(Xρ)µj = −(Xρ)jµ,

(Xρ)µν = 0. (A.3)

The bosonic field Y = Y T has the same index structure
as (A.2) with

Yij = sij − e2F 2
0

4
〈λi(Qem

R − Qem
L )〉〈λj(Qem

R − Qem
L )〉,

Yiν = −eF0

4
〈λi{∇ν(Qem

R − Qem
L ) + i[uν ,Qem

R + Qem
L ]}〉,

Yµj = Yjµ,

Yµν =
3e2F 2

0

8
δµν〈(Qem

R − Qem
L )2〉. (A.4)

The covariant derivative acting on the fermions,

Dρ = ∂ρ + ifρ (A.5)

is determined by

fρ =

[
(fρ)ab (fρ)an

(fρ)mb (fρ)mn

]
(A.6)

with

(fρ)ab = −eAρδab,

(fρ)an =
F 2

0

2
〈uρQw

L 〉δan,

(fρ)mb =
F 2

0

2
〈uρQw†

L 〉δmb,

(fρ)mn = 0. (A.7)

The fermion mass matrix m shares the index structure
with (A.6). The matrix elements read

mab = maδab, man = mmb = mmn = 0. (A.8)

The fields αρ, ᾱρ, β, β̄ are fermionic quantities. αρ is given
by

αρ =

[
(αρ)aj (αρ)aν

(αρ)mj (αρ)mν

]
(A.9)

with

(αρ)aj = − iF0

4
〈[uρ,Qw

L ]λj〉νaL,

(αρ)aν = −eF 2
0

4
δρν〈Qw

L (Qem
R − Qem

L )〉νaL − eδρν`a,

(αρ)mj = − iF0

4
〈[uρ,Qw†

L ]λj〉`mL,

(αρ)mν = −eF 2
0

4
δρν〈Qw†

L (Qem
R − Qem

L )〉`mL. (A.10)

ᾱρ takes the form

ᾱρ =

[
(ᾱρ)ib (ᾱρ)in

(ᾱρ)µb (ᾱρ)µn

]
(A.11)

with

(ᾱρ)ib = − iF0

4
〈[uρ,Qw†

L ]λi〉νbL,

(ᾱρ)in = − iF0

4
〈[uρ,Qw

L ]λi〉`nL,

(ᾱρ)µb = −eF 2
0

4
δρµ〈Qw†

L (Qem
R − Qem

L )〉νbL − eδρµ`b,

(ᾱρ)µn = −eF 2
0

4
δρµ〈Qw

L (Qem
R − Qem

L )〉`nL. (A.12)
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Finally,

βaj = −F0

2
〈Qw

Lλj〉νaL,

βmj = −F0

2
〈Qw†

L λj〉`mL,

βaν = βmν = 0, (A.13)

and

β̄ib = −F0

2
〈Qw†

L λi〉νbL,

β̄in = −F0

2
〈Qw

Lλi〉`nL,

β̄µb = β̄µn = 0. (A.14)
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